TOKYO: Japanese prosecutors are considering bringing a case against Nissan Motor Co. after Chairman Carlos Ghosn’s arrest on suspicion of financial misconduct, the Asahi Shimbun daily said on Wednesday.
Ghosn, one of the global car industry’s best-known leaders, was arrested on Monday after Nissan’s internal investigations found he had allegedly engaged in years of wrongdoing, including personal use of company money and under-reporting earnings. The Japanese company plans to remove him as chairman on Thursday.
Prosecutors said Ghosn and Representative Director Greg Kelly conspired to understate Ghosn’s compensation over five years starting in fiscal 2010 as being about half of the actual 10 billion yen ($88.65 million).
The Asahi quoted unnamed sources as saying that the mis-stating meant the company also bore responsibility and that prosecutors were eyeing the possibility of putting together a case against it.
Prosecutors were not immediately able to comment. Nissan declined to comment on the report.
There has been no comment from Ghosn or Kelly on any of the allegations against them, including a report in Japan’s Nikkei business daily on Tuesday that Ghosn had received share price-linked compensation of about 4 billion yen over a five-year period to March 2015 but that it went unreported in Nissan’s financial reports.
Reuters could not contact Ghosn or Kelly for comment.
Ghosn is also chairman and chief executive of Nissan’s French partner Renault, and chairman of Japan’s Mitsubishi Motors Corp, the third partner in the alliance.
Renault on Tuesday tapped its chief operating officer and a senior board member to fill in for Ghosn, but the board refrained from firing him while awaiting for detail on the allegations — a decision that could buy more time for an accelerated, permanent succession process.
Shares in Nissan rose 0.6 percent on Wednesday after falling nearly 6 percent a day earlier. ($1 = 112.8000 yen)
Japan prosecutors weigh bringing case against Nissan after Ghosn arrest -Asahi
Japan prosecutors weigh bringing case against Nissan after Ghosn arrest -Asahi
- Ghosn, one of the global car industry’s best-known leaders, was arrested on Monday after Nissan’s internal investigations found he had allegedly engaged in years of wrongdoing
AI’s shift toward proactive healthcare
- Experts reveal how AI is reducing burnout and streamlining workflows
JEDDAH: Artificial intelligence is increasingly moving from the margins of healthcare innovation into its operational core. Rather than replacing clinicians, AI is being deployed to address persistent challenges across health systems, from administrative overload and staff burnout to fragmented data and inefficient patient flow.
Speaking to Arab News, Abbes Seqqat, chief executive officer of Rain Stella Technologies, and Eric Turkington, chief product officer, discussed how AI is already transforming healthcare delivery — and why its impact is most meaningful when embedded directly into clinical workflows rather than treated as a standalone tool.
Seqqat describes AI’s role as accelerating a structural shift in healthcare delivery. “AI is accelerating the shift in healthcare from reactive to proactive care, because AI fundamentally helps detect, analyze and predict,” he said, noting that many health systems lack the resources to perform these tasks at scale.
While AI use cases in healthcare are broad, Seqqat emphasized that the most effective applications today focus on operational and clinical fundamentals, including reducing administrative burden, identifying patient risks earlier, and capturing clinical data more reliably and in real time.
RST’s portfolio reflects this approach, spanning surgical data capture and workflow automation, cloud-based electronic medical records, and health information exchange. Across these systems, the common goal is improving data quality and usability so clinicians can spend less time managing information and more time delivering care.
According to Turkington, RST’s systems rely on a mix of established and emerging AI technologies.
“Across the portfolio, we are using a wide range of AI and predictive technologies, from voice technology to reliably capture clinician inputs, to large language models that analyze and act on collected data,” he said.
A key focus has been adapting AI to regional and clinical realities. Voice models, for example, have been trained on UAE and GCC accents and grounded in medical terminology to improve accuracy in real-world settings. RST also uses retrieval-augmented generation and multi-agent AI architectures, allowing different AI components to perform specialized tasks such as classifying surgical notes, identifying unusual events, or assisting with billing and coding, Turkington explained.
DID YOU KNOW?
• AI can detect, analyze, and predict patient risks faster than traditional methods.
• Systems like Equinox use voice input and predictive analytics to actively support clinical decisions.
• AI assistants provide real-time updates, automate documentation, and improve coordination in operating theaters.
One of the central concerns around AI adoption is whether it adds complexity to already demanding clinical roles. Seqqat argues the opposite should be the goal.
“For nurses and frontline staff, AI’s greatest contribution is removing the invisible administrative friction that leads to burnout,” Seqqat said.
In operating theaters, AI systems can replace manual coordination methods such as phone calls and whiteboards by providing real-time situational awareness. By automating updates, anticipating delays, and serving as an on-demand clinical notepad, AI reduces cognitive load and allows staff to remain focused on patient care, he explained.
RST’s voice-enabled assistant, Orva, is designed specifically for perioperative environments.
Turkington said it enables hands-free documentation and coordination, helping surgical teams manage schedules and resources more effectively.
By capturing live updates through voice input, Orva can surface delays, flag bottlenecks, and prompt coordination between departments. It also assists with documentation and coding, reducing errors and supporting more accurate reimbursement— an area where incomplete records often create downstream challenges.
Electronic medical records remain central to healthcare delivery, but Turkington noted that AI can move them beyond passive data repositories.
“We designed Equinox as an EMR that enables you to spend less time with the software and more time with patients,” Turkington said.
Through voice input, automated documentation from visual annotations, and AI-generated pre-visit summaries, the system can actively support clinicians rather than slow them down. Predictive analytics, such as identifying no-show risks or highlighting care gaps, further shift EMRs toward decision-support tools rather than administrative obligations.
Both executives stressed that AI’s effectiveness depends heavily on data access and quality. Seqqat pointed to interoperability as a prerequisite rather than an afterthought.
“AI is only as powerful as the data it can access,” he said, adding that fragmented records limit both clinical insight and system-wide learning.
Health information exchanges, such as RST’s Constellation platform, enable patient data to be viewed longitudinally across providers. AI can then assist with patient identity matching and population-level analysis, allowing trends and risks to be identified across large datasets.
Turkington shared an example from an operating theatre where AI helped prevent cascading delays. When a surgical case ran late, a nurse verbally updated Orva that the patient was ready to exit. The system alerted the recovery unit, analyzed schedule conflicts, and prompted management to reassign staff before delays affected subsequent procedures.
Opinion
This section contains relevant reference points, placed in (Opinion field)
By tagging the cause of the delay and feeding that data into predictive models, the system helped prevent similar issues in the future — without additional manual coordination.
According to Seqqat, the primary returns from AI adoption come from combining efficiency with financial accuracy. Streamlined workflows allow providers to treat more patients without compromising care, while improved documentation reduces revenue leakage.
Looking ahead, Seqqat sees AI becoming central to Saudi Arabia’s healthcare transformation. He described its role as advancing smart hospitals, predictive patient flow, and precision medicine aligned with Vision 2030 goals.
“The role of AI in Saudi Arabia’s healthcare sector is evolving from a supporting technology to a foundational pillar of the Kingdom’s Vision 2030 transformation. Over the next few years, we expect to see AI move into the realm of smart hospitals, where predictive analytics optimize patient flow and AI-driven precision medicine leverages the Saudi Genome Program to provide hyper-personalized care. By unifying national health data and automating complex administrative workflows, AI will enable a more proactive, value-based healthcare model that improves patient outcomes and operational efficiency across the country.”










